Respuesta :

Answer:

[tex]\frac{17}{13}[/tex]

Step-by-step explanation:

Given

tan x = [tex]\frac{5}{12}[/tex] = [tex]\frac{opposite}{adjacent}[/tex]

5 and 12 are the legs of a 5- 12- 13 right triangle with hypotenuse 13, thus

sin x = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{5}{13}[/tex]

cos x = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{12}{13}[/tex]

Thus

sin x + cos x = [tex]\frac{5}{13}[/tex] + [tex]\frac{12}{13}[/tex] = [tex]\frac{17}{13}[/tex]