Respuesta :

Answer:

Step-by-step explanation:

The trick here is to notice that :

  •  [tex]\frac{AB}{DC}[/tex]=[tex]\frac{BC}{DE}[/tex]=[tex]\frac{AC}{CE}[/tex]

Now let's replace by the values we khow :

  • [tex]\frac{AB}{18}[/tex]=[tex]\frac{8}{24}[/tex]=[tex]\frac{5}{DE}[/tex]  
  • 8/24 is 1/3 to make it simple
  • Now AB= 18*(1/3)=6 AND DE= 5*(3/1)=15

So AB=6 cm and DE=15 cm

From the given information in the diagram

a) The length of DE is 15cm and

b) The length of AB is 6cm

From the question,

Triangles ABC and CDE are mathematically similar.

a) To determine the length of DE

Since ΔABC is similar to ΔCDE

By similar triangles theorem, we can write that

[tex]\frac{/BC/}{/DE/}=\frac{/CA/}{/EC/}[/tex]

From the diagram

/BC/ = 5cm

/CA/ = 8cm

/EC/ = 24 cm

/DE/ = ?

Putting these values into

[tex]\frac{/BC/}{/DE/}=\frac{/CA/}{/EC/}[/tex]

We get

[tex]\frac{5}{/DE/}=\frac{8}{24}[/tex]

∴ [tex]8 \times /DE/ = 5 \times 24[/tex]

Now, divide both sides by 8

[tex]\frac{8 \times /DE/}{8}= \frac{5 \times 24}{8}[/tex]

[tex]/DE/ = \frac{120}{8}[/tex]

/DE/ = 15cm

b) To work out the length of AB

Also, by similar triangles theorem, we can write that

[tex]\frac{/AB/}{/CD/}=\frac{/CA/}{/EC/}[/tex]

From the diagram

/AB/ = ?

/CD/ = 18cm

/CA/ = 8cm

/EC/ = 24 cm

Putting these values into

[tex]\frac{/AB/}{/CD/}=\frac{/CA/}{/EC/}[/tex]

We get

[tex]\frac{/AB/}{18}=\frac{8}{24}[/tex]

Now, multiply both sides by 18, that is

[tex]18 \times \frac{/AB/}{18}=\frac{8}{24} \times 18[/tex]

[tex]/AB/ = \frac{144}{24}[/tex]

/AB/ = 6cm

Hence,

a) The length of DE is 15cm and

b) The length of AB is 6cm

Learn more here: https://brainly.com/question/14106654