Find the dimensions of a rectangle with perimeter 92 m whose area is as large as possible. (If both values are the same number, enter it into both blanks.) g

Respuesta :

Answer:

The dimensions are x = 23 and y = 23

The maximum area of the rectangle  A = 529

Step-by-step explanation:

Step(i):-

Let given function area of the rectangle

                                    A = x y ....(i)

Given Perimeter of rectangle

                          2 ( x + y ) = 92

                               (x +y ) = 46

                                y = 46 - x ....(ii)

Substitute y = 46 - x in equation (i)

                             A = x (46 - x)

                            A = 46 x - x²  ....(iii)

Differentiating equation (iii) with respective to 'x'

                            [tex]\frac{dA}{dx} = 46(1) - 2 x[/tex]  ...(iv)

Step(ii):-

              [tex]\frac{dA}{dx} = 46(1) - 2 x = 0[/tex]

                       46 - 2 x = 0

                             46  = 2 x

                              x  = 23

Again Differentiating equation (iv) with respective to 'x'

                      [tex]\frac{d^{2} A}{dx^{2} } = - 2 (1) = -2 < 0[/tex]

The maximum value at x = 23

Step(iii):-

From(ii)

                      y = 46 - x

                     y   = 46 - 23

                   y    = 2 3

The dimensions are x = 23 and y = 23

Final answer :-

The dimensions are x = 23 and y = 23

The maximum area of the rectangle

                        A = x y

                      A = 23 ×23

                     A = 529

The maximum area of the rectangle  = 529

The dimension of the rectangle with perimeter 92 m whose area is as large as possible is 23m by 23m

If the perimeter of a rectangle is 92m, hence;

2(x+y) = 92

x is the length

y is the width

x + y = 46 ....... 1

If the area is as large as possible, hence;

xy = maximum .........2

From equation 1, x = 46 - y

Substitute into the second equation

(46-y)y = P(y)

P(y) = 46y - y²

If the product is at the maximum, hence;

dP/dy = 46 - 2y = 0

46 - 2y = 0]

2y = 46

y = 23

Since x + y = 46

x = 46 - y

x = 46 - 23

x = 23

Hence the dimension of the rectangle with perimeter 92 m whose area is as large as possible is 23m by 23m

Learn more here: https://brainly.com/question/13598452