Respuesta :
Step-by-step explanation:
firstly suppose f(X) as y and later interchange it with x and solve it to get inverse function of x.

The inverse of the given function is [tex]f^{-1}(x)=\dfrac{x+4}{2}[/tex].
Important information:
- The given function is [tex]f(x)=2x-4[/tex].
We need to find the inverse of the given function.
Inverse of a function:
Substitute [tex]f(x)=y[/tex].
[tex]y=2x-4[/tex]
Interchange [tex]x[/tex] and [tex]y[/tex].
[tex]x=2y-4[/tex]
Isolate [tex]y[/tex].
[tex]x+4=2y[/tex]
[tex]\dfrac{x+4}{2}=y[/tex]
Substitute [tex]y=f^{-1}(x)[/tex].
[tex]\dfrac{x+4}{2}=f^{-1}(x)[/tex]
Thus, the inverse of the given function is [tex]f^{-1}(x)=\dfrac{x+4}{2}[/tex].
Find out more about 'Inverse of a function' here:
https://brainly.com/question/11926240