Answer:
The 95% confidence interval for the true mean resale value of a 5-year-old car of this model
(11,688.68 , 12,511.32)
Step-by-step explanation:
Step(i):-
Given sample size 'n' = 17
mean of the sample x⁻ = 12,100
Standard deviation of the sample (S) = 800
The 95% confidence interval for the true mean resale value of a 5-year-old car of this model
[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} } )[/tex]
Step(ii):-
Degrees of freedom ν =n-1 = 17-1 =16
[tex]t_{(16 , 0.05)} = 2.1199[/tex]
The 95% confidence interval for the true mean resale value of a 5-year-old car of this model
[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} } )[/tex]
[tex](12,100 - 2.1199\frac{800}{\sqrt{17} } , 12,100 + 2.1199 \frac{800}{\sqrt{17} } )[/tex]
(12,100 - 411.32 , 12,100 + 411.32)
(11,688.68 , 12,511.32)