Respuesta :

Answer:

1) x = 71°, 2) x = 27°, 3) x= 32°

Step-by-step explanation:

1) Rectangle ABCD.

∠D = 90°

From ΔABE.

∠EAB +∠ABE + ∠BEA = 180°

45 + 90 +∠BEA = 180

∠BEA = 45

∠BEA + ∠AED +∠DEC = 180 °, because ∠BEC is a straight angle

45 + x + 64 = 180

x = 71°

2) Δ XYZ  is equilateral, all angles = 60°.

∠YZX = 60°.

∠YZW = 180°, because it is a straight angle.

∠YZX + ∠XZW= 180

60 +  ∠XZW= 180

∠XZW = 120.

From ΔXZW

∠ZXW + ∠XWZ + WZX = 180

x + 33 + 120 = 180

x = 27°

3) In ΔPQR,

PQ =  PR, so ∠PQR = ∠PRQ = 69°

∠PRQ + ∠PRS = 180, because ∠QRS = 180° as straight angle.

∠PRQ + ∠PRS = 180

69 + ∠PRS = 180

∠PRS  = 111°.

From ΔPRS

∠PRS  + ∠RSP + ∠SPR = 180

111 + 37 + ∠SPR = 180

111 + 37 + x= 180

x = 32