What is the product? StartFraction 3 k Over k + 1 EndFraction times StartFraction k squared minus 1 Over 3 k cubed EndFraction

Respuesta :

Answer:it’s b

Step-by-step explanation:

Just took quiz on edge 2020

The product of [tex]\frac{3k}{k+1}[/tex] and [tex]\frac{(k)^{-1} }{(3k)^{3} }[/tex] is [tex]\frac{1}{9(k^{4} +k^{3}) }[/tex] .

What are the exponent rules?

Product of powers rule - Add powers together when multiplying like bases i.e.

[tex]x^{m}.x^{n} =x^{m+n}[/tex]

Quotient of powers rule - Subtract powers when dividing like bases i.e.

[tex]\frac{x^{m} }{x^{n} } =x^{m-n}[/tex]

Power of powers rule - Multiply powers together when raising a power by another i.e.

[tex](x^{m} )^{n} =x^{mn}[/tex]

According to the given question.

We have an expression.

[tex]\frac{3k}{k+1} \times\frac{(k)^{-1} }{(3k)^{3} }[/tex]

The product of [tex]\frac{3k}{k+1}[/tex] and [tex]\frac{(k)^{-1} }{(3k)^{3} }[/tex] is given by

[tex]\frac{3k}{k+1} \times\frac{(k)^{-1} }{(3k)^{3} }[/tex]

[tex]=\frac{3k^{1-1} }{(k+1)(3)^{3} k^{3} }[/tex]                (product power rule)

[tex]=\frac{3k^{0} }{(k+1)27k^{3} }[/tex]

[tex]=\frac{3(1)}{(k+1)27k^{3} }[/tex]                 (because [tex]x^{0} =1)[/tex]

[tex]=\frac{1}{9(k+1)k^{3} }[/tex]                      (cancelling out 27 by 3)

[tex]=\frac{1}{9(k^{4} +k^{3}) }[/tex]

Hence, the product of [tex]\frac{3k}{k+1}[/tex] and [tex]\frac{(k)^{-1} }{(3k)^{3} }[/tex] is [tex]\frac{1}{9(k^{4} +k^{3}) }[/tex] .

Find out more information about exponent rule here:

https://brainly.com/question/14513824

#SPJ3