Respuesta :

Answer: A) max at (14, 6) = 64,   min at (0,0) = 0

Step-by-step explanation:

Graph the lines at look for the points of intersection.

Input those points into the Constraint function (2x + 6y) and look for the maximum value and minimum value.

Points of Intersection: (0, 0), (17, 0), (0, 10), (14, 6)

Point     Constraint 2x + 6y

(0, 0):                    2(0) + 6(0) = 0              Minimum

(17, 0):                    2(17) + 6(0) = 34

(0, 10):                    2(0) + 6(10) = 60

(14, 6):                    2(14) + 6(6) = 64           Maximum

Ver imagen tramserran