Answer and Step-by-step explanation:
The computation is shown below
Given that as per the question
n = 59
p = 0.32
Therefore mean is
[tex]=\mu[/tex]
[tex]= np[/tex]
[tex]= 59 \times 0.32[/tex]
= 18.88
Now the standard deviation i.e [tex]\sigma[/tex]
[tex]= \sqrt{np(1-p)}[/tex]
[tex]= \sqrt{18.88(1 - 0.32)}[/tex]
= 3.58
Now the minimum usual number of yellow eggs is
[tex]= \mu - 2\times \sigma[/tex]
[tex]= 18.88-2 \times 3.58[/tex]
= 12 yellow eggs
And, the maximum number is
[tex]= \mu + 2\times \sigma[/tex]
[tex]= 18.88 + 2 \times 3.58[/tex]
= 26 yellow eggs