Respuesta :

Answer:

D

Step-by-step explanation:

The minimum value is the value of the y- coordinate of the vertex.

Given a parabola in standard form, y = ax² + bx + c ( a ≠ 0 )

Then the x- coordinate of the vertex is

[tex]x_{vertex}[/tex] = - [tex]\frac{b}{2a}[/tex]

y = [tex]\frac{3}{4}[/tex] x² + 6x + 6 ← is in standard form

with a = [tex]\frac{3}{4}[/tex] , b = 6, thus

[tex]x_{vertex}[/tex] = - [tex]\frac{6}{\frac{3}{2} }[/tex] = - 4

Substitute x = - 4 into y and evaluate

y = [tex]\frac{3}{4}[/tex] (- 4)² + 6(- 4) + 6 = 12 - 24 + 6 = - 6

Thus minimum value = - 6 → D