Consider the function below. (If an answer does not exist, enter DNE.) F(x) = x 9 − x (a) Find the interval of increase. (Enter your answer using interval notation.)

Respuesta :

Answer:

[tex](-\infty, -0.76) \cup (0.76, \infty)[/tex]

Step-by-step explanation:

The first step to solve this question is finding the critical points of the function F(x), which are x for which:

[tex]F'(x) = 0[/tex]

In this question:

[tex]F(x) = x^{9} - x[/tex]

So

[tex]F'(x) = 9x^{8} - 1[/tex]

[tex]9x^{8} - 1 = 0[/tex]

[tex]9x^{8} = 1[/tex]

[tex]x^{8} = \frac{1}{9}[/tex]

[tex]x = \sqrt[8]{\frac{1}{9}}[/tex]

[tex]x = \pm 0.76[/tex]

So we have three intervals:

[tex](-\infty, -0.76), (-0.76, 0.76), (0.76, \infty)[/tex]

We take a value of x from each interval. If the derivative is positive, the function increases. Otherwise, it decreases.

First interval:

[tex](-\infty, -0.76)[/tex]

Will take x = -1.

[tex]F'(-1) = 9*(-1)^{8} - 1 = 9 - 1 = 8[/tex]

Positive, so increases.

Second interval:

(-0.76, 0.76),

Will take x = 0;

[tex]F'(0) = 9*(0)^{8} - 1 = 0 - 1 = -1[/tex]

Negative, so decreases

Third interval:

[tex](0.76, \infty)[/tex]

Will take x = 1

[tex]F'(1) = 9*(1)^{8} - 1 = 9 - 1 = 8[/tex]

Positive, so increases.

Interval of increase:

First and third, so:

[tex](-\infty, -0.76) \cup (0.76, \infty)[/tex]