Answer:
[tex]z=-0.842<\frac{a-30}{7.8}[/tex]
And if we solve for a we got
[tex]a=30 -0.842*7.8=23.432[/tex]
So the value of height that separates the bottom 20% of data from the top 80% is 23.432.
Step-by-step explanation:
Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(30,7.8)[/tex]
Where [tex]\mu=30[/tex] and [tex]\sigma=7.8[/tex]
For this part we want to find a value a, such that we satisfy this condition:
[tex]P(X>a)=0.80[/tex] (a)
[tex]P(X<a)=0.20[/tex] (b)
As we can see on the figure attached the z value that satisfy the condition with 0.20 of the area on the left and 0.80 of the area on the right it's z=-0.842
If we use condition (b) from previous we have this:
[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.20[/tex]
[tex]P(z<\frac{a-\mu}{\sigma})=0.20[/tex]
But we know which value of z satisfy the previous equation so then we can do this:
[tex]z=-0.842<\frac{a-30}{7.8}[/tex]
And if we solve for a we got
[tex]a=30 -0.842*7.8=23.432[/tex]
So the value of height that separates the bottom 20% of data from the top 80% is 23.432.