Answer:
ME = 3.64
Step-by-step explanation:
Given:
Sample size, n = 21
Sample mean, X' = 95
Standard deviation [tex] \sigma [/tex] = 8.
Confidence interval = 95%
Significance level [tex] \alpha[/tex] = 0.05
Required:
Find margin of error
To find the margin of error, use the formula below:
[tex] M.E = \frac{\sigma}{\sqrt{n}} * t_\alpha_/_2; _d_f [/tex]
Where,
[tex] t_\alpha_/_2 = 0.05/2 = 0.025[/tex]
degree of freedom, df = n - 1 = 21 - 1 = 20
Therefore,
[tex] M.E = \frac{8}{\sqrt{21}} * t_0_._0_2_5; _2_0 [/tex]
Using the table at 95% Confidence interval, we have:
[tex] = \frac{8}{\sqrt{21}} * 2.086 [/tex]
[tex] = 3.6416 [/tex]
Rounding to 2 decimal places,
ME = 3.64