A 2.5-kg object falls vertically downward in a viscous medium at a constant speed of 2.5 m/s. How much work is done by the force the viscous medium exerts on the object as it falls 80 cm?

Respuesta :

Answer:

The workdone is [tex]W_v = - 20 \ J[/tex]

Explanation:

From the question we are told that

    The mass of the object is [tex]m = 2.5 \ kg[/tex]

     The speed of fall is [tex]v = 2.5 \ m/s[/tex]

     The depth of fall is  [tex]d = 80\ cm = 0.8 \ m[/tex]

Generally according to the work energy theorem

      [tex]W = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2[/tex]

Now here given the that the velocity is  constant  i.e  [tex]v_1 = v_2 = v[/tex] then

We have that

    [tex]W = \frac{1}{2} mv^2 - \frac{1}{2} mv^2 = 0 \ J[/tex]  

So in terms of workdone by the potential energy of the object and that of the viscous liquid we have

       [tex]W = W_v - W_p[/tex]

Where  [tex]W_v[/tex] is workdone by viscous liquid

             [tex]W_p[/tex] is the workdone by the object which is mathematically represented as

            [tex]W_p = mgd[/tex]

So  

       [tex]0 = W_v + mgd[/tex]

=>    [tex]W_v = - m * g * d[/tex]

substituting values

       [tex]W_v = - (2.5 * 9.8 * 0.8)[/tex]

      [tex]W_v = - 20 \ J[/tex]