The Ball Corporation's beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation σ = .000586 mm. Assume a random sample of 59 sheets of metal resulted in an x¯ = .2905 mm. Calculate the 95 percent confidence interval for the true mean metal thickness.

Respuesta :

Answer:

The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

[tex]M = 1.96\frac{0.000586}{\sqrt{59}} = 0.0002[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is 0.2905 - 0.0002 = 0.2903 mm

The upper end of the interval is the sample mean added to M. So it is 0.2905 + 0.0002 = 0.2907 mm

The 95 percent confidence interval for the true mean metal thickness is between 0.2903 mm and 0.2907 mm