A simply supported beam (E 512 GPa) carries a uniformly distributed load q 5125 N/m, and a point load P 5 200 N at mid-span. The beam has a rectangular cross section (b 5 75 mm, h 5 200 mm) and a length of 3.6 m. Calculate the maximum deflection of the beam

Respuesta :

Answer:

[tex]\mathbf{\Delta_{max}=0.78 \ mm}[/tex]

Explanation:

From the given information;

A simply supported beam (E = 12 GPa)

load q = 125 N/m

point load P = 200 N

the rectangular cross section

b = 75 mm

h = 200 mm

length = 3.6 m

The objective is to  calculate the maximum deflection of the beam;

Using the formula;

[tex]I = \dfrac{1}{E}*bh^3[/tex]    about the z-axis that goes through the central

[tex]I = \dfrac{1}{12}*(75 \ mm)*(200 \ mm)^3[/tex]

[tex]I = 5*10^7 \ mm^4[/tex]

The length L = 3.6 m = 3600 mm

The maximum deflection of the beam can be calculated by using the formula:

[tex]\Delta _{max} = \dfrac{5}{384}* \dfrac{qL^4}{EI}+\dfrac{PL^3}{48EI}[/tex]

[tex]\Delta _{max} = \dfrac{1}{12*10^3 \frac{N}{mm^2}*5*10^7 \ mm^4 }[ \dfrac{5*\frac{125 \ N}{100 \ mm}*3600 \ mm^4}{384}+\dfrac{200*(3600 \ mm )^3}{48}][/tex]

Thus; the maximum deflection of the beam is [tex]\mathbf{\Delta_{max}=0.78 \ mm}[/tex]