Answer:
Point of intersection (x, y, z) = (16, 16, 16)
1. a. Yes
2. a. Yes
Step-by-step explanation:
In order for the particles to colide (and therefore have their paths intersect), the values for the i, j, and k coordinates must be equal for a given 't':
For the i coordinate:
[tex]i_{r(t)} =i_{u(t)}\\t^2=3t+4\\t=\frac{3\pm\sqrt{9-4*1*(-4)} }{2}\\t=4\ or\ -1[/tex]
For the j coordinate:
[tex]j_{r(t)} =j_{u(t)}\\9t-20=t^2\\t=\frac{9\pm\sqrt{81-4*1*20} }{2}\\t=4\ or\ 5[/tex]
For the k coordinate:
[tex]k_{r(t)} =k_{u(t)}\\t^2=5t-4\\t=\frac{5\pm\sqrt{25-4*1*4} }{2}\\t=4\ or\ 1[/tex]
As we can see, for t =4, both paths have the same coordinates and therefore they intersect and the particles will colide.
[tex]r(4) = 4^2i + (9*4 - 20)j + 4^2k \\r(4)=16i+16j+16k\\u(4) = (3*4 + 4)i + 4^2j + (5*4 - 4)k\\u(4)=16i+16j+16k[/tex]
Point of intersection (x, y, z) = (16, 16, 16)