The table represents an exponential function.
What is the multiplicative rate of change of the
function?
x
1
0 1 / 3
2
3
0 2 3
y
6
4
8
3
16
9
O 2
09
4.

Respuesta :

Question Correction

The table represents an exponential function. What is the multiplicative rate of change of the  function?

(A)1/3 (B)2/3 (C)2 (D)9

[tex]\left|\begin{array}{c|c}x&y\\--&--\\1&9\\2&6\\3&4\\4&\dfrac83\\\\5&\dfrac{16}{9}\end{array}\right|[/tex]

Answer:

(B)  [tex]\dfrac{2}{3}[/tex]

Step-by-step explanation:

An exponential function is a function of the form

[tex]y= a (b)^{x}[/tex]

where a is the initial value and b is the multiplicative rate of change

When  x=2, y=6, we have:

[tex]6= a (b)^{2}[/tex]

When  x=3, y=4, we have:

[tex]4= a (b)^{3}[/tex]

Dividing the two equations:

[tex]\dfrac{a (b)^{3}}{a (b)^{2}} =\dfrac{6}{9} \\b=\dfrac{6}{9}\\b=\dfrac{2}{3}[/tex]

The multiplicative rate of change, b is [tex]\dfrac{2}{3}[/tex].

The correct option is B.

Answer: It's B) 2/3

Hope it helps :3