Respuesta :

Answer: The distace between midpoints of AP and QB is [tex]\frac{a}{8}[/tex].

Step-by-step explanation: Points P and Q are between points A and B and the segment AB measures a, then:

AP + PQ + QB = a

According to the question, AP = 2 PQ = 2QB, so:

PQ = [tex]\frac{AP}{2}[/tex]

QB = [tex]\frac{AP}{2}[/tex]

Substituing:

AP + 2*([tex]\frac{AP}{2}[/tex]) = a

2AP = a

AP = [tex]\frac{a}{2}[/tex]

Since the distance is between midpoints of AP and QB:

2QB = AP

QB = [tex]\frac{AP}{2}[/tex]

QB = [tex]\frac{a}{2}*\frac{1}{2}[/tex]

QB = [tex]\frac{a}{4}[/tex]

MIdpoint is the point that divides the segment in half, so:

Midpoint of AP:

[tex]\frac{AP}{2} = \frac{a}{2}*\frac{1}{2}[/tex]

[tex]\frac{AP}{2} = \frac{a}{4}[/tex]

Midpoint of QB:

[tex]\frac{QB}{2} = \frac{a}{4}*\frac{1}{2}[/tex]

[tex]\frac{QB}{2} = \frac{a}{8}[/tex]

The distance is:

d = [tex]\frac{a}{4} - \frac{a}{8}[/tex]

d = [tex]\frac{a}{8}[/tex]