Which function represents g(x), a reflection of f(x) =
(10)^x across the x-axis?
g(x) = -2/5(10)^x
g(x) = -2/5(1/10)^x
g(x) =2/5(1/10)^-x
g(x) = 2/5(10)^-x

Respuesta :

Answer:

Option A.

Step-by-step explanation:

Note: The given function should be [tex]f(x)=\dfrac{2}{5}(10)^x[/tex] instead of [tex]f(x)=(10)^x[/tex].

Consider the given function is  

[tex]f(x)=\dfrac{2}{5}(10)^x[/tex]

We need to find the function which represents a reflection of f(x) across the x-axis.

If a function f(x) is reflected across the x-axis, then the new function is

[tex]g(x)=-f(x)[/tex]

Using this rule, we get

[tex]g(x)=-\dfrac{2}{5}(10)^x[/tex]        [tex][\because f(x)=\dfrac{2}{5}(10)^x][/tex]

Therefore, the correct option is A.