Respuesta :
use the quadratic formula -b+(square root)b^2-4ac / 2a
a=1, b=5, c=6
-5+(square root)5^2-4(1)(6) / 2(1)
x=-2, x=-3
a=1, b=5, c=6
-5+(square root)5^2-4(1)(6) / 2(1)
x=-2, x=-3
Answer:
x = -2 OR x = -3
Step-by-step explanation:
=> [tex]x^2+5x+6 = 0[/tex]
Using mid-term break formula
=> [tex]x^2+2x+3x+6 = 0[/tex]
=> x(x+2)+3(x+2) = 0
Taking x+2 common
=> (x+2)(x+3) = 0
So Either,
x+2 = 0 OR x+3 = 0
x = -2 OR x = -3