Respuesta :

use the quadratic formula -b+(square root)b^2-4ac / 2a
a=1, b=5, c=6
-5+(square root)5^2-4(1)(6) / 2(1)
x=-2, x=-3

Answer:

x = -2      OR     x = -3

Step-by-step explanation:

=> [tex]x^2+5x+6 = 0[/tex]

Using mid-term break formula

=> [tex]x^2+2x+3x+6 = 0[/tex]

=> x(x+2)+3(x+2) = 0

Taking x+2 common

=> (x+2)(x+3) = 0

So Either,

x+2 = 0   OR    x+3 = 0

x = -2      OR     x = -3