Respuesta :

Answer:

40.1 cm

solution,

BC=8.4 cm

AB=12 cm

BD=4.1 cm

We have to find out: AC ,CD

using Pythagoras theorem:

In ABC ,<B=90°

[tex] {(ac)}^{2} = {(ab)}^{2} + {(bc)}^{2} \\ {(ac)}^{2} = {(12)}^{2} + {(8.4)}^{2} \\ {(ac)}^{2} = 144 + 70.56 \\ {(ac)}^{2} = 214.56 \\ ac = \sqrt{214.56} \\ ac = 14.64 \: cm[/tex]

Similarly,

In BCD, CB=90

[tex]cd = \sqrt{ {(8.4)}^{2} + {(4.1)}^{2} } [/tex]

[tex] = \sqrt{70.56 + 16.81} \\ = \sqrt{87.37} \\ = 9.34 \: cm[/tex]

Perimeter:

AC+CD+AD

=14.64+9.34+(12+4.1)

=40.08

= 40.1 cm

Hope this helps...

Good luck on your assignment..