What is the answer to this?

Answer:
solution,
BC=8.4 cm
AB=12 cm
BD=4.1 cm
We have to find out: AC ,CD
using Pythagoras theorem:
In ∆ABC ,<B=90°
[tex] {(ac)}^{2} = {(ab)}^{2} + {(bc)}^{2} \\ {(ac)}^{2} = {(12)}^{2} + {(8.4)}^{2} \\ {(ac)}^{2} = 144 + 70.56 \\ {(ac)}^{2} = 214.56 \\ ac = \sqrt{214.56} \\ ac = 14.64 \: cm[/tex]
Similarly,
In ∆BCD, CB=90
[tex]cd = \sqrt{ {(8.4)}^{2} + {(4.1)}^{2} } [/tex]
[tex] = \sqrt{70.56 + 16.81} \\ = \sqrt{87.37} \\ = 9.34 \: cm[/tex]
Perimeter:
AC+CD+AD
=14.64+9.34+(12+4.1)
=40.08
= 40.1 cm
Hope this helps...
Good luck on your assignment..