Respuesta :

Answer:

[tex] \frac{ {4a}^{4} }{b} [/tex]

solution,

[tex] \sqrt{16 {a}^{8} {b}^{ - 2} } \\ [/tex]

Use negative power rule:

[tex] {x}^{ - a} = \frac{1}{ {x}^{a} } [/tex]

[tex] \sqrt{ {16}^{8} \times \frac{1}{ {b}^{2} } } \\ [/tex]

Simplify:

[tex] \sqrt{ \frac{ {16a}^{8} }{ {b}^{2} } } \\ = \frac{ \sqrt{ {16a}^{8} } }{ \sqrt{ {b}^{2} } } \\ [/tex]

Use this rule:

[tex] \sqrt{ab} = \sqrt{a} . \sqrt{b} [/tex]

[tex] \frac{ \sqrt{16. \sqrt{ {a}^{8} } } }{ \sqrt{ {b}^{2} } } [/tex]

Since, 4*4=16 ,the square root of 16 is 4

[tex] \frac{ \sqrt{ {4}^{2} } \sqrt{ {a}^{8} } }{ \sqrt{ {b}^{2} } } \\ = \frac{4 \sqrt{ {a}^{8} } }{ \sqrt{ {b}^{2} } } [/tex]

Simplify:

[tex] \frac{4 \: \sqrt{ {(a}^{4) ^{2} } } }{ \sqrt{ {b}^{2} } } \\ = \frac{4 {a}^{4} }{b} [/tex]

Hope this helps...

Good luck on your assignment...