Respuesta :

Answer:

second option

Step-by-step explanation:

Given

[tex]x^{4}[/tex] + 6x² + 5 = 0

let u = x², then

u² + 6u + 5 = 0 ← in standard form

(u + 1)(u + 5) = 0 ← in factored form

Equate each factor to zero and solve for u

u + 1 = 0 ⇒ u = - 1

u + 5 = 0 ⇒ u = - 5

Change u back into terms of x, that is

x² = - 1 ( take the square root of both sides )

x = ± [tex]\sqrt{-1}[/tex] = ± i ( noting that [tex]\sqrt{-1}[/tex] = i ), and

x² = - 5 ( take the square root of both sides )

x = ± [tex]\sqrt{-5}[/tex] = ± [tex]\sqrt{5(-1)}[/tex] = ± [tex]\sqrt{5}[/tex] × [tex]\sqrt{-1}[/tex] = ± i[tex]\sqrt{5}[/tex]

Solutions are x = ± i and x = ± i[tex]\sqrt{5}[/tex]