Respuesta :

Answer:

[tex]a = 0[/tex]

Step-by-step explanation:

Given

[tex](\frac{1}{7})^{3a+3} = (343)^{a-1}[/tex]

Required

Find a

We start by writing 343 as a factor of 7

[tex](\frac{1}{7})^{3a+3} = (343)^{a-1}[/tex]

[tex](\frac{1}{7})^{3a+3} = (7^3)^{a-1}[/tex]

From laws of indices;

[tex]\frac{1}{a} = a^{-1}[/tex]

So;

[tex](\frac{1}{7})^{3a+3} = (7^3)^{a-1}[/tex] becomes

[tex](7^{-1})^{3a+3} = (7^3)^{a-1}[/tex]

[tex](7)^{(-1){(3a+3)}} = (7)^{3(a-1)}[/tex]

Cancel 7 on both sides

[tex](-1){(3a+3) = {3(a-1)}[/tex]

Open brackets

[tex]-3a - 3 = 3a - 3[/tex]

Collect like terms

[tex]3 - 3 = 3a + 3a[/tex]

[tex]0 = 6a[/tex]

Divide both sides by 6

[tex]0 = a[/tex]

[tex]a = 0[/tex]

Answer:

a=0 is correct!!!!!

Step-by-step explanation:

jus got 100% on edge!!