Find the x-intercepts of the parabola with vertex (4,-1) and y-intercept (0,15). Write your answer in this form: (x1,y1),(x2,y2). If necessary, round to the nearest hundredth.

Respuesta :

Answer:

(3,0) and (5,0)

Step-by-step explanation:

First let's write the generic model of a parabola:

[tex]y = ax^2 + bx + c[/tex]

Now, using the points (0, 15) and (4, -1), we have:

(0, 15):

[tex]15 = 0a + 0b + c[/tex]

[tex]c=15[/tex]

(4, -1):

[tex]-1 =16a+4b+15[/tex]

[tex]16a + 4b = -16[/tex]

[tex]4a + b = -4[/tex]

The x-coordinate of the vertex is given by the equation:

[tex]x_v = -b/2a[/tex]

[tex]-b/2a = 4[/tex]

[tex]b = -8a[/tex]

Now, using this value of b in the equation [tex]4a + b = -4[/tex], we have:

[tex]4a - 8a = -4[/tex]

[tex]a = 1[/tex]

[tex]b = -8[/tex]

The x-intercepts are where we have y = 0, so:

[tex]0 = x^2 -8x + 15[/tex]

Using Bhaskara's formula, we have:

[tex]\Delta = b^2 - 4ac = 64 -60 = 4[/tex]

[tex]x = -b \±\sqrt{\Delta}/2a[/tex]

[tex]x_1 = (8 + 2)/2 = 5[/tex]

[tex]x_2 = (8 - 2)/2 = 3[/tex]

So the x-intercepts are (3,0) and (5,0).