Respuesta :
Answer:
P([tex]\frac{5\pi }{6}[/tex]) = ( -[tex]\sqrt{3} / 2[/tex] , [tex]1/2[/tex] )
Step-by-step explanation:
Cos [tex]\frac{5\pi }{6}[/tex] = [tex]\sqrt{3} / 2[/tex]
Sin [tex]\frac{5\pi }{6}[/tex] = [tex]1/2[/tex]
Since [tex]\frac{5\pi }{6}[/tex] lies in Quadrant II , So Cos [tex]\frac{5\pi }{6}[/tex] < 0, Sin [tex]\frac{5\pi }{6}[/tex] > 0
So,
The coordinates are P([tex]\frac{5\pi }{6}[/tex]) = ( -[tex]\sqrt{3} / 2[/tex] , [tex]1/2[/tex] )
Answer:
[tex]p(\frac{5 \pi}{6} ) = (- \frac{\sqrt{3} }{2} , \frac{1}{2} )[/tex]
Step-by-step explanation:
[tex]cos(\frac{5 \pi}{6} )=\frac{\sqrt{3} }{2}[/tex]
[tex]sin(\frac{5 \pi}{6} ) = \frac{1}{2}[/tex]
(5π)/6 is in quadrant II, so..
[tex]cos(\frac{5 \pi}{6} ) < 0[/tex]
[tex]sin(\frac{5 \pi}{6} ) > 0[/tex]
The points are:
[tex]p(\frac{5 \pi}{6} ) = (- \frac{\sqrt{3} }{2} , \frac{1}{2} )[/tex]