A clinical trial tests a method designed to increase the probability of conceiving a girl. In the study 335335 babies were​ born, and 268268 of them were girls. Use the sample data to construct a 9999​% confidence interval estimate of the percentage of girls born. Based on the​ result, does the method appear to be​ effective?

Respuesta :

Answer:

The 99​% confidence interval estimate of the percentage of girls born is (74.37%, 85.63%).

Usually, 50% of the babies are girls. This confidence interval gives values considerably higher than that, so the method to increase the probability of conceiving a girl appears to be very effective.

Step-by-step explanation:

Confidence Interval for the proportion:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 335, \pi = \frac{268}{335} = 0.8[/tex]

99% confidence level

So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.8 - 2.575\sqrt{\frac{0.8*0.2}{335}} = 0.7437[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.8 + 2.575\sqrt{\frac{0.8*0.2}{335}} = 0.8563[/tex]

For the percentage:

Multiplying the proportions by 100.

The 99​% confidence interval estimate of the percentage of girls born is (74.37%, 85.63%).

Usually, 50% of the babies are girls. This confidence interval gives values considerably higher than that, so the method to increase the probability of conceiving a girl appears to be very effective.