Answer:
[tex]n \geq 42[/tex]
Step-by-step explanation:
Data provided
P = 0.6
The calculation of sample size is shown below:-
Here the sampling distribution of proportion will be approximately normal, then follow the rule which is here below:-
[tex]np\geq 10\ and\ np (1 - p)\geq 10[/tex]
Now we will consider condition 2
[tex]np(1 - p)\geq \ 10[/tex]
[tex]n(0.6) (1 - 0.6) \geq \ 10[/tex]
[tex]n(0.6) (0.4) \geq\ 10[/tex]
[tex]n\geq \frac{10}{0.24}[/tex]
[tex]n \geq 41.66667[/tex]
or
[tex]n \geq 42[/tex]
Therefore for computing the required sample size we simply solve the above equation.