Answer:
[tex]T_2=453.05K[/tex]
Explanation:
Hello,
In this case, the temperature-variable Arrhenius equation is written as:
[tex]\frac{k(T_2)}{k(T_1)}=exp(\frac{Ea}{R}(\frac{1}{T_2}-\frac{1}{T_1} ))[/tex]
Now, for us to solve for the temperature by which the reaction rate constant is 0.0760M/s we proceed as shown below:
[tex]ln(\frac{k(T_2)}{k(T_1)})=\frac{Ea}{R}(\frac{1}{T_2}-\frac{1}{T_1} )\\ln(\frac{0.0760M/s}{0.00000291M/s} )=\frac{183000J/mol}{8.314J/(mol*K)} *(\frac{1}{T_2} -\frac{1}{573K} )\\\frac{1}{T_2} -\frac{1}{573K} =\frac{10.17}{22011.06K^{-1}} \\\\\frac{1}{T_2}=4.62x10^{-4}K^{-1}+\frac{1}{573K}\\\\\frac{1}{T_2}=2.21x10^{-3}K^{-1}\\\\T_2=453.05K[/tex]
Regards.