Answer:
The critical buckling load is [tex]\mathbf{P_o = 141.61 \ kN}[/tex]
Explanation:
Given that:
the width of the rectangular steel = 37.5 mm = 0.0375 m
the thickness = 50 mm = 0.05 m
the length = 1.75 m
modulus of elasticity = 200 Gpa = 200 10⁹ × Mpa
We are to calculate the critical buckling load [tex]P_o[/tex]
Using the formula:
[tex]P_o = \dfrac{\pi ^2 E I}{L^2}[/tex]
where;
[tex]I = \dfrac{0.0375^3*0.05}{12}[/tex]
[tex]I = 2.197 * 10^{-7}[/tex]
[tex]P_o = \dfrac{\pi ^2 *200*10^9 * 2.197*10^{-7}}{1.75^2}[/tex]
[tex]P_o = 141606.66 \ N[/tex]
[tex]\mathbf{P_o = 141.61 \ kN}[/tex]
The critical buckling load is [tex]\mathbf{P_o = 141.61 \ kN}[/tex]