A rectangular steel bar 37.5 mm wide and 50 mm thick is pinned at each end and subjected to axial compression. The bar has a length of 1.75 m. The modulus of elasticity is 200 Gpa. What is the critical buckling load

Respuesta :

Answer:

The critical buckling load is [tex]\mathbf{P_o = 141.61 \ kN}[/tex]

Explanation:

Given that:

the width of the rectangular steel = 37.5 mm = 0.0375 m

the thickness = 50 mm  = 0.05 m

the length = 1.75 m

modulus of elasticity = 200 Gpa = 200 10⁹ × Mpa

We are to calculate the critical buckling load  [tex]P_o[/tex]

Using the formula:

[tex]P_o = \dfrac{\pi ^2 E I}{L^2}[/tex]

where;

[tex]I = \dfrac{0.0375^3*0.05}{12}[/tex]

[tex]I = 2.197 * 10^{-7}[/tex]

[tex]P_o = \dfrac{\pi ^2 *200*10^9 * 2.197*10^{-7}}{1.75^2}[/tex]

[tex]P_o = 141606.66 \ N[/tex]

[tex]\mathbf{P_o = 141.61 \ kN}[/tex]

The critical buckling load is [tex]\mathbf{P_o = 141.61 \ kN}[/tex]