Respuesta :
Answer:
5249 years
Step-by-step explanation:
Half-Life of Carbon-14 is approximately 5730 years.
When we want to determine the age of a fossil using carbon dating, we use the formula:
[tex]t=\dfrac{\ln(N/N_0)}{-0.693} \cdot t_{1/2}[/tex]
Where:
- [tex]t_{1/2}[/tex] is the half-life of the isotope carbon 14,
- t = age of the fossil (or the date of death) and
- ln() is the natural logarithm function
In this case:
N(t)=100
[tex]N_o=53\\t_{1/2}\approx 5730$ years[/tex]
Therefore, the age of the mummy
[tex]t=\dfrac{\ln(53/100)}{-0.693} \cdot 5730\\=5249.43$ years\\t \approx 5249$ years[/tex]
Answer:
the answer is 6349 :)
Step-by-step explanation:
Someone put the correct answer in the comments so I figured I would put it here so you wouldn't miss it :) (It is correct I have tested it)