An aluminum bar 600mm long, with diameter 40mm, has a hole drilled in the center of the bar. The hole is 40mm in diameter and 100mm long. If modulus of elasticity is for the aluminum is 85GN/m^2, calculate the total contraction on the bar due to compressive load of 180kN?

Respuesta :

Answer:

1.228 x [tex]10^{-6}[/tex] mm

Explanation:

diameter of aluminium bar D = 40 mm  

diameter of hole d = 30 mm

compressive Load F = 180 kN = 180 x [tex]10^{3}[/tex] N

modulus of elasticity E = 85 GN/m^2  = 85 x [tex]10^{9}[/tex] Pa

length of bar L = 600 mm

length of hole = 100 mm

true length of bar = 600 - 100 = 500 mm

area of the bar A = [tex]\frac{\pi D^{2} }{4}[/tex] =  [tex]\frac{3.142* 40^{2} }{4}[/tex] = 1256.8 mm^2

area of hole a = [tex]\frac{\pi(D^{2} - d^{2}) }{4}[/tex] = [tex]\frac{3.142*(40^{2} - 30^{2})}{4}[/tex] = 549.85 mm^2

Total contraction of the bar = [tex]\frac{F*L}{AE} + \frac{Fl}{aE}[/tex]

total contraction = [tex]\frac{F}{E} * (\frac{L}{A} +\frac{l}{a})[/tex]

==> [tex]\frac{180*10^{3}}{85*10^{9}} *( \frac{500}{1256.8} + \frac{100}{549.85})[/tex] = 1.228 x [tex]10^{-6}[/tex] mm