A farmer is building a fence to enclose a rectangular area consisting of two separate regions. The four walls and one additional vertical segment (to separate the regions) are made up of fencing, as shown below. A rectangular area consisting of two separated regions. If the farmer has 162 feet of fencing, what are the dimensions of the region which enclose the maximal areas?

Respuesta :

Answer:

The maximal area will be "1093.5 square feet".

Step-by-step explanation:

Let,

Length = L feet

Breadth = b feet

Given Total fencing = 162 feet

According to the question,

 [tex](2\times L)+(3\times b)=162[/tex]

              [tex]2L+3B=162[/tex]

                         [tex]L=\frac{162-3b}{2}[/tex]

                         [tex]L=81-\frac{3}{2}b[/tex]

As we know,

 [tex]Area=Length\times breadth[/tex]

          [tex]=(81-\frac{3}{2}b)\times b[/tex]

          [tex]=81b-\frac{3}{2}b^2[/tex]

Now, we required to decrease or minimize the are. So for extreme points:

 [tex]\frac{dA}{db}=0[/tex]

or,

 [tex]\frac{dA}{dB}=\frac{d}{db}(81-\frac{3}{2}b^2 )=0[/tex]

       [tex]81-\frac{3}{2}\times 2\times b=0[/tex]

                            [tex]b=\frac{81}{3}[/tex]

                            [tex]b=27 \ feet[/tex]

Now on putting the value of b, we get

 [tex]l=81-\frac{3}{2}\times 27[/tex]

   [tex]=81-40.5[/tex]

   [tex]=40.5 \ feet\\[/tex]

So that the dimensions will be:

⇒  40.5 feet by 27 feet

Therefore when the dimension are above then the area will be:

=  [tex]81\times 27-\frac{3}{2}\times 27\times 27[/tex]

=  [tex]2187-\frac{3}{2}\times 729[/tex]

=  [tex]2187-1093.5[/tex]

=  [tex]1093.5 \ square \ feet[/tex]