Respuesta :

Answer:

JL ≈ 32  

Step-by-step explanation:

The triangle JKL  has a side of JK = 24 and we are asked to find side JL. The triangle JKL is a right angle triangle.

Let us find side the angle J first from the  triangle JKM. Angle JMN is 90°(angle on a straight line).

using the cosine ratio

cos J = adjacent/hypotenuse

cos J = 18/24

cos J = 0.75

J = cos⁻¹ 0.75

J = 41.4096221093

J ≈ 41.41°

Let us find the third angle L of the triangle JKL .Sum of angle in a triangle = 180°. Therefore,  180 - 41.41 - 90 = 48.59

Angle L = 48.59 °.

Using sine ratio

sin 48.59 ° = opposite/hypotenuse

sin 48.59 ° = 24/JL

cross multiply

JL sin 48.59 ° = 24

divide both sides by sin 48.59 °

JL = 24/sin 48.59 °

JL = 24/0.74999563751

JL = 32.0001861339

JL ≈ 32