An infinitely long line of charge with uniform density, rho???????? lies in y-z plane parallel to the zaxis at y=1m. (a) Find the potential VAB at point A (4m, 2m, 4m) in Cartesian coordinates with respect to point B (0,0,0). (b) Find E filed at point B.

Respuesta :

Answer with Explanation:

We are given that

Density=[tex]\rho l[/tex]

A(4m,2m,4m) and B(0,0,0)

y=1 m

a. Linear charge density=[tex]\frac{\rho l}{l}=\rho C/m[/tex]

Let a point P (0,1,4) on the line of charge  and point Q (0,1,0)

Therefore,

Distance AP=[tex]\sqrt{(4-0)^2+(2-1)^2+(4-4)^2}=\sqrt{17}[/tex]

Distance,BQ=[tex]\sqrt{(0-0)^2+(1-0)^2+(0-0)^2}=1[/tex]

Electric field for infinitely long line

[tex]E=\frac{\rho}{2\pi \epsilon_0 r}\cdot \hat{r}[/tex]

Therefore, potential

[tex]V_{BA}=-\int_{a}^{b}E\cdot dl[/tex]

[tex]V_{BA}=-\int_{\sqrt{17}}^{1}\frac{\rho}{2\pi \epsilon_0 r}\hat{r}\cdot \hat{r} dr[/tex]

[tex]V_{BA}=-\int_{\sqrt{17}}^{1}\frac{\rho}{2\pi \epsilon_0 r}dr[/tex]

[tex]V_{BA}=-\frac{\rho}{2\pi \epsilon_0}[\ln r]^{1}_{\sqrt{17}}[/tex]

[tex]V_{BA}=-\frac{\rho}{2\pi \epsilon_0}(ln 1-ln(\sqrt{17})=\frac{\rho}{2\pi \epsilon_0}(ln(\sqrt{17})[/tex]

[tex]V_{BA}=V_B-V_A[/tex]

[tex]V_{AB}=V_A-V_B=-V_{BA}=-\frac{\rho}{2\pi \epsilon_0}(ln(\sqrt{17})[/tex]

b.Electric field at point B

[tex]E=\frac{\rho}{2\pi \epsilon_0 r}\cdot \hat{r}[/tex]

Unit vector r=[tex]-\hat{j}[/tex]

Therefore,

[tex]E=\frac{\rho}{2\pi \epsilon_0 r}\cdot \hat{-j}[/tex]