Find two positive numbers satisfying the given requirements. The product is 216 and the sum is a minimum. (No Response) (smaller value) (No Response) (larger value)

Respuesta :

Answer:

[tex]x1=\sqrt{216} \ and \ y1=\ \sqrt{216}[/tex]

Step-by-step explanation:

Let the first number is x1 and other number is y1 then

[tex]x1 * y1 =216[/tex]

Therefore

[tex]y1=[/tex][tex]\frac{216}{x1}[/tex]

also there sum is

[tex]s1 =x1+y1[/tex]....Eq(1)

Putting the value of y1  in the previous equation

[tex]s1\ =x1 + \frac{216}{x1}[/tex]........Eq(2)

Differentiate the the Eq(2) with respect to x1 we get

[tex]\frac{ds1}{dx1} \ =\ 1+216*\frac{1}{-x1^{2} }[/tex]

[tex]\frac{ds1}{dx1} \ =\ 1-\frac{216}{x1^{2} }\ =\ 0[/tex]

[tex]{x1^{2} }\ =\ 216\\ x1=\sqrt{216}[/tex]

Putting the value of X1 in Eq(1) we get

[tex]y1=\frac{216}{\sqrt{216} } \\y1=\frac{216*\sqrt{216} }{216} \\y1=\ \sqrt{216}[/tex]

So [tex]x1=\sqrt{216} \ and \ y1=\ \sqrt{216}[/tex]