Explanation:
It is given that,
The electron in a hydrogen atom, originally in level n = 8, undergoes a transition to a lower level by emitting a photon of wavelength 3745 nm. It means that,
[tex]n_i=8[/tex]
[tex]\lambda=3745\ nm[/tex]
The amount of energy change during the transition is given by :
[tex]\Delta E=R_H[\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}][/tex]
And
[tex]\dfrac{hc}{\lambda}=R_H[\dfrac{1}{n_f^2}-\dfrac{1}{n_i^2}][/tex]
Plugging all the values we get :
[tex]\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{3745\times 10^{-9}}=2.179\times 10^{-18}[\dfrac{1}{n_f^2}-\dfrac{1}{8^2}]\\\\\dfrac{5.31\times 10^{-20}}{2.179\times 10^{-18}}=[\dfrac{1}{n_f^2}-\dfrac{1}{8^2}]\\\\0.0243=[\dfrac{1}{n_f^2}-\dfrac{1}{64}]\\\\0.0243+\dfrac{1}{64}=\dfrac{1}{n_f^2}\\\\0.039925=\dfrac{1}{n_f^2}\\\\n_f^2=25\\\\n_f=5[/tex]
So, the final level of the electron is 5.