Answer:
D) 3.0
Explanation:
As we know that
[tex]The\ specific\ gravity\ of\ fluid = \frac{density\ of\ fluid}{density\ of\ water \ at\ 4\ C} = \frac{\rho_f}{1,000}[/tex]
[tex]0.6 = \frac{\rho_f}{1000}[/tex]
So,
[tex]\rho_f = 600[/tex]
Now
T = True weight of object
= mg
[tex]= 25 \times 9.8[/tex]
= 245 N
W = apparent weight = 200 N
[tex]\sigma[/tex] = density of object
Now we use the formula
buoyancy force = True weight - W
[tex]\rho_f V g = 245 - 200[/tex]
600 V (9.8) = 45
V = 0.007653
m = 25 kg
And as we know that
[tex]\sigma = \frac{m}{V}[/tex]
[tex]= \frac{25}{0.007653}[/tex]
= 3266.7
Now
specific gravity is
[tex]= \frac{\sigma}{water\ density}[/tex]
[tex]= \frac{3266.7}{1000}[/tex]
= 3.2
Hence, the correct option is d.