Answer:
28.137 sq. units.
Step-by-step explanation:
Area of a regular hexagon is
[tex]A=\dfrac{3\sqrt{3}}{2}a^2[/tex]
where, a is the side length.
It is given that the side length of the regular hexagon is [tex]1.9\sqrt{3}[/tex].
Substitute [tex]a=1.9\sqrt{3}[/tex] in the above formula.
[tex]A=\dfrac{3\sqrt{3}}{2}(1.9\sqrt{3})^2[/tex]
[tex]A=(1.5\sqrt{3})(10.83)[/tex]
[tex]A=16.245\sqrt{3}[/tex]
[tex]A=28.137[/tex]
Therefore, the area of regular hexagon is 28.137 sq. units.