Respuesta :

Answer:

Option (1)

Step-by-step explanation:

Coordinates of the vertices of a quadrilateral WXYZ drawn in the figure are,

W(-1, 4), X(2, 2), Y(0, -1), Z(-3, 1)

Length of a segment having ends as [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is represented by,

d = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Length of WX = [tex]\sqrt{(-1-2)^2+(4-2)^2}[/tex]

                       = [tex]\sqrt{9+4}[/tex]

                       = [tex]\sqrt{13}[/tex]

Length of XY = [tex]\sqrt{(2-0)^2+(2+1)^2}[/tex]

                      = [tex]\sqrt{13}[/tex]

Length of YZ = [tex]\sqrt{(0+3)^2+(-1-1)^2}[/tex]

                      = [tex]\sqrt{13}[/tex]

Length of ZW = [tex]\sqrt{(-1+3)^2+(4-1)^2}[/tex]

                      = [tex]\sqrt{13}[/tex]

Slope of side WX ([tex]m_1[/tex]) = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

                                  = [tex]\frac{4-2}{-1-2}[/tex]

                                  = [tex]-\frac{2}{3}[/tex]

Slope of side XY ([tex]m_2[/tex]) = [tex]\frac{2+1}{2-0}[/tex]

                                    = [tex]\frac{3}{2}[/tex]

By the property of perpendicular lines,

[tex]m_1\times m_2=-1[/tex]

[tex](-\frac{2}{3})(\frac{3}{2})=-1[/tex]

therefore, WX and XY are perpendicular.

Slope of YZ ([tex]m_3[/tex]) = [tex]\frac{-1-1}{0+3}=-\frac{2}{3}[/tex]

[tex]m_2\times m_3=(\frac{3}{2})\times (-\frac{2}{3})=-1[/tex]

Therefore, XY ⊥ YZ

Similarly, we can prove YZ ⊥ ZW.

Therefore, quadrilateral WXYZ is a SQUARE.

Option (1) will be the answer.

Answer:

Its A, square

Step-by-step explanation:

I just took the quiz. :)