Respuesta :

Answer:

(-4,0) and (4,0)

Option C and Option F are the right options.

solution,

[tex] {x}^{2} + {y}^{2} = 16......(equation \: i) \\ \frac{ {x}^{2} }{ {4}^{2} } - \frac{ {y}^{2} }{ {4}^{2} } = 16......( \: equation \: ii) \\ from \: equation \: ii \\ \frac{ {x}^{2} }{ {4}^{2} } - \frac{ {y}^{2} }{ {4}^{2} } = 1 \\ \frac{ {x}^{2} - {y}^{2} }{ {4}^{2} } = 1 \\ \frac{ {x}^{2} - {y}^{2} }{16} = 1 \\ {x}^{2} - {y}^{2} = 16......... \: equation \: iii \\ now \: adding \: equation \: i \: and \: ii \\ {x}^{2} + {y}^{2} = 16 \\ {x}^{2} - {y}^{2} = 16 \\ ...................... \\ 2 {x}^{2} = 32 \\ or \: {x}^{2} = \frac{32}{2} \\ or \: {x}^{2} = 16 \\ or \: x = \sqrt{16} \\ or \: x = \sqrt{ {(4)}^{2} } \: \: \: or \: \: \sqrt{ {( - 4)}^{2} } \\ x = + 4 \: or \: - 4[/tex]

Now

When X=4,

[tex] {y}^{2} = 16 - {x}^{2} \\ {y}^{2} = 16 - {4}^{2} \\ {y}^{2} = 16 - 16 \\ {y = 0}^{2} \\ y = \sqrt{ {(0)}^{2} } \\ y = 0[/tex]

When X=-4,

[tex] {y}^{2} = 16 - {x}^{2} \\ {y}^{2} = 16 - {( - 4)}^{2} \\ {y}^{2} = 16 - 16 \\ {y}^{2} = 0 \\ y = \sqrt{ {(0)}^{2} } \\ y = 0[/tex]

The solutions are (4,0) and (-4,0)

Hope this helps...

good luck on your assignment..

Answer:

C and F

Step-by-step explanation:

x² + y² = 16  ------------------(I)

[tex]\frac{x^{2}}{4^{2}}-\frac{y^{2}}{4^{2}}=1\\\\x^{2}-y^{2}=4^{2}[/tex]

x² - y² = 16 ---------------(I)

(I)                x² + y² = 16

(I)               x² - y² = 16    {add & y² will be eliminated}

                 2x²     = 32

x² = 32/2

x² = 16

x = √16

x = ±4

When x = 4,

4² + y² = 16

16 + y² = 16

      y² = 16 - 16

      y² = 0

y = 0

(4,0) is a solution

When x = -4,

(-4)² + y² = 16

16 + y² = 16

      y² = 16 - 16

      y² = 0

y = 0

(-4, 0 ) is a solution