Find the Volume of the composite figure below.

Answer:
solution,
Volume of this composite figure
= Volume of cylinder+volume of cone
Formula to find volume of cylinder:
[tex]\pi \: {r}^{2} h[/tex]
Formula to find volume of cone:
[tex] \frac{1}{3} \pi {r}^{2} h[/tex]
Use,
[tex]\pi = \: pi[/tex]
Here,
Radius of cone= radius of cylinder
=9 ft
Height of cylinder=10 ft
Height of cone=16 ft-10 ft=6 ft
Nowz
Volume of the figure:
[tex] \: pi \: {r}^{2} h + \frac{1}{3} \: pi \: {r}^{2} h \\ = \: pi \times {(9)}^{2} \times 10 + \frac{1}{3} \times \: pi \times {(9)}^{2} \times 6 \\ = \: pi \: \times 81 \times 10 + \frac{1}{3} \times 21 \times 6 \times \: pi \\ = 810 \: pi + 162 \: pi \\ = 972 \: pi \: {ft}^{2} [/tex]
Hope this helps...
Good luck on your assignment...