Answer:
a) X has a mean of 25 and a variance of 8.
b) The probability that the total weight X is between 22 and 28 oz is 0.711.
Step-by-step explanation:
We have to calculate the mean and variance of a sum of random normal variables.
We can apply the rule for mean and variance for sum of independent variables:
[tex]X=L+M\\\\E(X)=E(L+M)=E(L)+E(M)\\\\V(X)=V(L+M)=V(L)+V(M)-2CoV(L,M)=V(L)+V(M)[/tex]
Then, the mean and variance of X is:
[tex]E(X)=E(L)+E(M)=15+10=25\\\\\\V(X)=V(L)+V(M)=2^2+2^2=4+4=8\\\\\sigma_x=\sqrt{V(X)}=\sqrt{8}\approx2.83[/tex]
We can calculate the probability that X is between 22 and 28 as:
[tex]z_1=\dfrac{X_1-\mu}{\sigma}=\dfrac{22-25}{2.83}=\dfrac{-3}{2.83}=-1.06\\\\\\z_2=\dfrac{X_2-\mu}{\sigma}=\dfrac{28-25}{2.83}=\dfrac{3}{2.83}=1.06\\\\\\P(22<X<28)=P(z<1.06)-P(z<-1.06)\\\\P(22<X<28)=0.855-0.145=0.711[/tex]