Respuesta :

Answer:

c = 6.25

Step-by-step explanation:

We are given the following piecewise function:

[tex]\left \{ {{cx^{2} + 2x, x < 3} \atop {3x^{3} - cx, x \geq 3}} \right[/tex]

Continuous function:

A function f(x) is continuous, at a point a, if:

[tex]\lim_{x \to a} f(x)[/tex] exists and [tex]\lim_{x \to a} f(x) = f(a)[/tex]

In this question:

Piece-wise function, so we have to verify if the limit exists.

The function changes at x = 3. So we verify at a = 3.

It will exist if:

[tex]\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)[/tex]

To the left:

Less than 3.

[tex]\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} cx^{2} + 2x = c*(3)^{2} + 2*3 = 9c + 6[/tex]

To the right:

Greater than 3.

[tex]\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} 3x^{3} - cx = 3*3^{3} - 3c = 81 - 3c[/tex]

f continuous:

They have to be equal:

[tex]\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x)[/tex]

[tex]9c + 6 = 81 - 3c[/tex]

[tex]12c = 75[/tex]

[tex]c = \frac{75}{12}[/tex]

[tex]c = 6.25[/tex]