Answer:
The answer is "Option A"
Step-by-step explanation:
Given:
[tex]\to \frac{(a-5)+a}{2}=x.....(a)\\\\\to \frac{a+(a+9)}{2}=y.....(b)\\\\[/tex]
solve the above equation:
[tex]\to \bold{\frac{(a-5)+a}{2}=x}\\\\\to \frac{a-5+a}{2}=x\\\\\to \frac{2a-5}{2}=x\\\\\to \bold{\frac{a+(a+9)}{2}=y}\\\\\to \frac{a+a+9}{2}=y\\\\\to \frac{2a+9}{2}=y\\\\[/tex]
add both value (x and y):
[tex]\to \bold{x+y}\\\\\to \frac{2a-5}{2}+\frac{2a+9}{2}\\\\\to \frac{2a-5+2a+9}{2}\\\\\to \frac{4a+4}{2}\\\\\to \frac{2(2a+2)}{2}\\\\\to (2a+2)\\[/tex]
average of x and y:
[tex]\to \frac{x+y}{2}\\\\\therefore \bold{x+y= 2a+2}\\\\\to \frac{2(a+1)}{2}\\\\\to \boxed{(a+1)}\\[/tex]