The average (arithmetic mean) of a - 5 and a is x, and the average of a and a + 9 is y. What is the average of x and y?
a + 1
B) a +2
C) 2a + 1
D) 2a + 2

Respuesta :

Answer:

The answer is "Option A"

Step-by-step explanation:

Given:

[tex]\to \frac{(a-5)+a}{2}=x.....(a)\\\\\to \frac{a+(a+9)}{2}=y.....(b)\\\\[/tex]

solve the above equation:

[tex]\to \bold{\frac{(a-5)+a}{2}=x}\\\\\to \frac{a-5+a}{2}=x\\\\\to \frac{2a-5}{2}=x\\\\\to \bold{\frac{a+(a+9)}{2}=y}\\\\\to \frac{a+a+9}{2}=y\\\\\to \frac{2a+9}{2}=y\\\\[/tex]

add both value (x and y):

[tex]\to \bold{x+y}\\\\\to \frac{2a-5}{2}+\frac{2a+9}{2}\\\\\to \frac{2a-5+2a+9}{2}\\\\\to \frac{4a+4}{2}\\\\\to \frac{2(2a+2)}{2}\\\\\to (2a+2)\\[/tex]

average of x and y:

[tex]\to \frac{x+y}{2}\\\\\therefore \bold{x+y= 2a+2}\\\\\to \frac{2(a+1)}{2}\\\\\to \boxed{(a+1)}\\[/tex]