Answer:
Null hypothesis: [tex]\sigma^2 \leq 0.003[/tex]
Alternative hypothesis: [tex]\sigma^2 > 0.003[/tex]
And for this case the statistic is given by:
[tex] T= (n-1)\frac{s^2}{\sigma^2_0}[/tex]
And replacing we got:
[tex] T =(26-1) \frac{0.06^2}{0.003}= 30[/tex]
Step-by-step explanation:
We have the following info given:
[tex] n = 26[/tex] represent the sample size
[tex] s =0.06[/tex] represent the sample deviation
We want to test the following hypothesis:
Null hypothesis: [tex]\sigma^2 \leq 0.003[/tex]
Alternative hypothesis: [tex]\sigma^2 > 0.003[/tex]
And for this case the statistic is given by:
[tex] T= (n-1)\frac{s^2}{\sigma^2_0}[/tex]
And replacing we got:
[tex] T =(26-1) \frac{0.06^2}{0.003}= 30[/tex]