2Q
When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;
E = [tex]\frac{1}{2}qV[/tex] ------------(i)
Where;
q = charge between the plates of the capacitor
V = potential difference between the plates of the capacitor
From the question;
q = Q
E = Ep
Therefore, equation (i) becomes;
Ep = [tex]\frac{1}{2} QV[/tex] ----------------(ii)
Make V subject of the formula in equation (ii)
V = [tex]\frac{2E_{p}}{Q}[/tex]
Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;
2Ep = [tex]\frac{1}{2}qV[/tex]
Substitute the value of V into the equation above;
2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])
Solve for q;
[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]
[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]
[tex]q = 2Q[/tex]
Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q