Answer:
(0.9,4.2)
Step-by-step explanation:
Given:
The table above such that
[tex]y = -x + 5[/tex]
[tex]y = 6x - 1[/tex]
Required
Approximation of the solution
To do this, we start by equating both values of y
[tex]-x + 5 = 6x - 1[/tex]
Collect like terms
[tex]-x - 6x = -5 -1[/tex]
[tex]-7x = -6[/tex]
Divide both sides by -7
[tex]\frac{-7x}{-7} = \frac{-6}{=7}[/tex]
[tex]x = \frac{6}{7}[/tex]
[tex]x = 0.8571[/tex]
[tex]x = 0.9[/tex] (Approximated)
Substitute [tex]\frac{6}{7}[/tex] for x in any of the expression of y
Using [tex]y = -x + 5[/tex]
[tex]y = -\frac{6}{7}+ 5[/tex]
[tex]y = \frac{-6+35}{7}[/tex]
[tex]y = \frac{29}{7}[/tex]
[tex]y = 4.1[/tex] (Approximated)
The closest to this is option D
(x,y) = (0.9,4.2)