Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=60, p=0.4, x=20

Respuesta :

Answer:

[tex]P(X=20)=(60C20)(0.4)^{20} (1-0.4)^{60-20}=0.0616[/

[tex]\mu =np= 60*0.4= 24[/tex]

[tex]\sigma =\sqrt{60*0.4*(1-0.4)}= 3.79[/tex]

And using the normal approximation we have:

[tex] P(19.5 < X< 20.5)[/tex]

And we can use the z score formula and we got:

[tex] z=\frac{19.5-24}{3.79}= -1.19[/tex]

[tex] z=\frac{20.5-24}{3.79}= -0.92[/tex]

And using the normal standard distribution table we got:

[tex] P(-1.19<z<-0.92) =P(z<-0.92) -P(z<-1.19) =0.179-0.117= 0.062[/tex]

So we see that the results are very similar

Step-by-step explanation:

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=60, p=0.4)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

And we want to find this probability:

[tex] P(X=20)[/tex]

And we can find the probability using the probability mass function

[tex]P(X=20)=(60C20)(0.4)^{20} (1-0.4)^{60-20}=0.0616[/tex]

Using the normal approximation we need to find the mean and the deviation:

[tex]\mu =np= 60*0.4= 24[/tex]

[tex]\sigma =\sqrt{60*0.4*(1-0.4)}= 3.79[/tex]

And using the normal approximation we have:

[tex] P(19.5 < X< 20.5)[/tex]

And we can use the z score formula and we got:

[tex] z=\frac{19.5-24}{3.79}= -1.19[/tex]

[tex] z=\frac{20.5-24}{3.79}= -0.92[/tex]

And using the normal standard distribution table we got:

[tex] P(-1.19<z<-0.92) =P(z<-0.92) -P(z<-1.19) =0.179-0.117= 0.062[/tex]

So we see that the results are very similar